What is Quantum Thermodynamics?
نویسنده
چکیده
What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? For everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions) allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrödinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism of ordinary quantum theory, so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility, we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior) and maximal-entropy-generation non-equilibrium dynamics. In this long introductory paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results regarding the nonequilibrium irreversible dynamics it entails. Our objective is to discuss and motivate the form of the generator of a nonlinear quantum dynamical group “designed” so as to accomplish a unification of quantum mechanics (QM) and thermodynamics, the nonrelativistic theory that we call Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermody-
منابع مشابه
A review of quantum thermodynamics
In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...
متن کاملSome Trends in Quantum Thermodynamics
Traditional answers to what the 2nd Law is are well known. Some are based on the microstate of a system wandering rapidly through all accessible phase space, while others are based on the idea of a system occupying an initial multitude of states due to the inevitable imperfections of measurements that then effectively, in a coarse grained manner, grow in time (mixing). What has emerged are two ...
متن کاملBioenergetics and the Coherence of Organisms
What is the coherence of organisms? The organism is not a heat engine Energy storage in the living system-to equilibrate and not to equilibrate Energy storage over all space-time domains How is energy mobilized in living systems? The thermodynamics of symmetrically coupled flows The thermodynamics of cyclical flows Coupled energy flows are symmetrical and cyclical "Long-range energy continua" C...
متن کاملGeneralization of thermodynamics allowing negentropic entanglement and a model for conscious information processing
3 TGD based variant of Beauregard’s model and generalization of thermodynamics 3 3.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 What happens in quantum jump? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Modification of thermodynamics to take into account negentropic entanglement . . . . 4 3.4 The analog of Carnot cy...
متن کاملCoherence and measurement in quantum thermodynamics
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007